

Getting started with

[image: _images/tinyfluxdb-dark.png]
The tiny time series database, optimized for your happiness.

Introduction

TinyFlux combines the simplicity of the document-oriented TinyDB [https://github.com/msiemens/tinydb] with the concepts and design of the fully-fledged time series database known as InfluxDB [https://influxdata.com/].

TinyFlux is a pure Python module that supports database-like operations on an in-memory or file datastore. It is optimized for time series data and as such, is considered a “time series database” (or “tsdb” for short). It is not, however, a database server that supports traditional RDMS features like the management of concurrent connections, management of indexes in background processes, or the provisioning of access control. Before using TinyFlux, you should be sure that TinyFlux is right for your intended use-case.

Why Should I Use TinyFlux?

In TinyFlux, time comes first.

	Time in TinyFlux is a first-class citizen. TinyFlux expects and handles Python datetime objects with ease. Queries are optimized for time, above all else.

TinyFlux is a real time series database.

	Concepts around TinyFlux are based on InfluxDB. If you are looking for a gradual introduction into the world of time series databases, this is a great starting point. If your workflow outgrows the offerings of TinyFlux, you can jump to InfluxDB with very little introduction needed.

TinyFlux is written in pure, standard library Python.

	TinyFlux needs neither an external server nor any dependencies and works on all modern versions of Python.

TinyFlux is optimized for your happiness.

	Like TinyDB [https://github.com/msiemens/tinydb], TinyFlux is designed to be simple and easy to use by providing a straight-forward and clean API.

TinyFlux is tiny.

	The current source code has 2000 lines of code (with about 50% documentation) and 2000 lines of tests.

TinyFlux has 100% test coverage.

	No explanation needed.

If you have a moderate amount of time series data without the need or desire to provision and manage a full-fledged server and its configuration, and you want to interface easily with the greater Python ecosystem, TinyFlux might be the right choice for you.

When To Look at Other Options

You should not use TinyFlux if you need advanced database features like:

	access from multiple processes or threads

	an HTTP server

	management of relationships between tables

	access-control and users

	ACID guarantees [https://en.wikipedia.org/wiki/ACID]

	high performance as the size of your dataset grows

If you have a large amount of data or you need advanced features and high performance, consider using databases like SQLite [https://www.sqlite.org/] or InfluxDB [https://influxdata.com/].

What’s the difference between TinyFlux and TinyDB?

At its core, TinyFlux is a time series database while TinyDB is a document-oriented database.

Let’s break this down:

In TinyFlux, time is a “first-class citizen”.

	In TinyDB, there is no special handling of time.

A TinyFlux database expects Python datetime objects to be passed with each and every data point.

	TinyDB does not accept datetime objects directly. In TinyDB, attributes representing time must be serialized and deserialized by the user, or an extension must added onto TinyDB to handle datetime objects.

In TinyFlux, queries are optimized for time.

	TinyFlux builds a small index in memory which includes an index on timestamps. This provides for ultra-fast search and retrieval of data when queries are time-based. TinyDB has no special mechanism for querying attributes of different types.

Data in TinyFlux is written to disk in “append-only” fashion.

	Irrespective of the current size of the database, inserting is always a constant-time operation on the order of nanoseconds. TinyFlux is optimized for time series datasets which are often write-heavy, as opposed to document-stores which are traditionally read-heavy. This allows high-frequency signals to be easily handled by TinyFlux. TinyDB does not expect high-frequency writes, and since it reads all data into memory before adding new data, its insert time increases linearly with the size of the database.

TinyFlux and TinyDB are both “schemaless”.

	This means that attributes and their existence between items may differ with no exceptions being raised. TinyDB, as a document store, supports the storage of complex types including containers like arrays/lists and objects/dictionaries. TinyFlux, however, provides for just three types of attributes- numeric, string, and of course, datetime.

Got it, so should I use TinyFlux or TinyDB?

	You should use TinyFlux if:
	
	Your data is naturally time series in nature. That is, you have many observations of some phenomenon over time with varying measurements. Examples include stock prices, daily temperatures, or the accelerometer readings on a running watch.

	You will be writing to the database at a regular, high frequency.

	You should use TinyDB if:
	
	Your data has no time dimension. Examples include a database acting as a phonebook for Chicago, the catalogue of Beatles music, or configuration values for your dashboard app.

	You will be writing to the database infrequently.

Installing TinyFlux

To install TinyFlux from PyPI, run:

$ pip install tinyflux

The latest development version is hosted on GitHub [https://github.com/citrusvanilla/tinyflux]. After downloading, install using:

$ pip install .

Getting Started

Initialize a new TinyFlux database (or connect to an existing file store) with the following:

>>> from tinyflux import TinyFlux
>>> db = TinyFlux('db.csv')

db is now a reference to the TinyFlux database that stores its data in a file called db.csv.

An individual instance of data in a TinyFlux database is known as a “Point”. In a traditional relational database, this would called called a “row”, and in a document-oriented database it is called a “document”. A TinyFlux Point is a convenient object for storing its four main attributes:

	Attribute

	Python Type

	Example

	measurement

	str

	"california air quality"

	time

	datetime

	datetime.now(timezone.utc)

	tags

	Dict of str keys and str values

	{"city": "Los Angeles", "parameter": "PM2.5"}

	fields

	Dict of str keys and float or int values

	{"aqi": 112.0}

In keeping with the analogy of a traditional RDMS, a measurement is like a table.

time is a field with the requirement that it is a datetime type, tags is a collection of string attributes, and fields is a collection of numeric attributes. TinyFlux is “schemaless”, so tags and fields can be added/removed to any Point.

To make a Point, import the Point definition and annotate the Point with the desired attributes. If measurement is not defined, it takes the default table name of _default.

>>> from tinyflux import Point
>>> p1 = Point(
... time=datetime.fromisoformat("2020-08-28T00:00:00-07:00"),
... tags={"city": "LA"},
... fields={"aqi": 112}
...)
>>> p2 = Point(
... time=datetime.fromisoformat("2020-12-05T00:00:00-08:00"),
... tags={"city": "SF"},
... fields={"aqi": 128}
...)

To write to TinyFlux, simply:

>>> db.insert(p1)
>>> db.insert(p2)

All points can be retrieved from the database with the following:

>>> db.all()
[Point(time=2020-01-01T00:08:00-00:00, measurement=_default, tags=city:LA, fields=aqi:112), Point(time=2020-12-05T00:08:00-00:00, measurement=_default, tags=city:SF, fields=aqi:128)]

Note

TinyFlux will convert all time to UTC. Read more about it here: Timezones in TinyFlux.

TinyFlux also allows iteration over stored Points:

>>> for point in db:
>>> print(point)
Point(time=2020-08-28T00:07:00-00:00, measurement=_default, tags=city:LA, fields=aqi:112)
Point(time=2020-12-05T00:08:00-00:00, measurement=_default, tags=city:SF, fields=aqi:128)

To query for Points, there are four query types- one for each of a Point’s four attributes.

>>> from tinyflux import FieldQuery, MeasurementQuery, TagQuery, TimeQuery
>>> Time = TimeQuery()
>>> db.search(Time < datetime.fromisoformat("2020-11-00T00:00:00-08:00"))
[Point(time=2020-08-28T00:07:00-00:00, measurement=_default, tags=city:LA, fields=aqi:112)]
>>> Field = FieldQuery()
>>> db.search(Field.aqi > 120)
[Point(time=2020-12-05T00:08:00-00:00, measurement=_default, tags=city:SF, fields=aqi:128)]
>>> Tag = TagQuery()
>>> db.search(Tag.city == "LA")
[Point(time=2020-08-28T00:07:00-00:00, measurement=_default, tags=city:LA, fields=aqi:112)]
>>> Measurement = MeasurementQuery()
>>> db.count(Measurement == "_default")
2

Points can also be updated:

>>> # Update the ``aqi`` field of the Los Angeles point.
>>> db.update(tag.city == "LA", tags={"aqi": 118})
>>> for point in db:
>>> print(point)
Point(time=2020-08-28T00:07:00-00:00, measurement=_default, tags=city:LA, fields=aqi:118)
Point(time=2020-12-05T00:08:00-00:00, measurement=_default, tags=city:SF, fields=aqi:128)

Points can also be removed:

>>> db.remove(tag.city == "SF")
1
>>> db.all()
[Point(time=2020-01-01T00:08:00-00:00, measurement=_default, tags=city:LA, fields=aqi:112)]

Here is the basic syntax covered in this section:

	Initialize a new TinyFlux Database

	db = TinyFlux("my_db.csv")

	Initialize or connect to existing with TinyFlux()

	Creating New Points

	Point(...)

	Initialize a new point.

	Inserting Points Into the Database

	db.insert()

	Insert a point.

	Retrieving Points

	db.all()

	Get all points

	iter(db)

	Iterate over all points

	db.search(query)

	Get a list of points matching the query

	db.count(query)

	Count the number of points matching the query

	Updating Points

	db.update(query, ...)

	Update all points matching the query

	Removing Points

	db.remove(query)

	Remove all points matching the query

	db.remove_all()

	Remove all points

	Querying TinyFlux

	TimeQuery()

	Create a new time query object

	FieldQuery().f_key == 2

	Match any point that has a field f_key with value
== 2 (also possible: !=, >, >=, <, <=)

To continue with the introduction to TinyFlux, proceed to the next section, Preparing Data.

Preparing Data

Before inserting data into TinyFlux, data must be cast into specific types of objects known as a “Points”. Here’s an example:

>>> from tinyflux import Point
>>> from datetime import datetime, timezone
>>> p = Point(
... measurement="city temperatures",
... time=datetime(2022, 1, 1, tzinfo=timezone.utc),
... tags={"city": "Greenwich", "country": "England"},
... fields={"high": 52.0, "low": 41.0}
...)

This term “Point” comes from InfluxDB. A well-formed Point consists of four attributes:

	measurement: Known as a “table” in relational databases, its value type is str.

	time: The timestamp of the observation, its value is a Python datetime object that should be “timezone aware”.

	tags: Text attributes of the observation as a Python dict of str|str key value pairs.

	fields: Numeric attributes of the observation as a Python dict of str|int or str|float key value pairs.

None of the four attributes is required during initialization; an empty Point can be initialized like the following:

>>> from tinyflux import Point
>>> Point()
Point(time=None, measurement=_default)

Notice that the time attribute is None, and the measurement attribute has taken the value of _default. The point also has no tags or fields. Tags and fields are not required, but from a user’s perspective, such a data point has little meaning.

Note

Points that do not have time values take on timestamps when they are inserted into TinyFlux, not when they are created. If you want time to reflect the time of creation, set time like: time=datetime.now(timezone.utc).

A default measurement is assigned to Points that are initialized without one.

Tags are string/string key value pairs. The reason for having separate attributes for tags and fields in TinyFlux (and in InfluxDB) is twofold: It enforces consistency of types and data on the user’s side, and it allows the database to efficiently index on tags, which are attributes with low cardinality (compared to fields, which tend to have much higher variation across values).

Note

While both TinyDB and TinyFlux are “schemaless”, TinyFlux does not support complex types as values. If you want to store documents, which are often collections rather than primitive types, take a look at TinyDB.

Hint

TinyFlux will raise a ValueError if you try to initialize a Point with incorrect types, so you can be sure you are not inserting malformed data into the database.

Writing Data

The standard method for inserting a new data point is through the db.insert(...) method. To insert more than one Point at the same time, use the db.insert_multiple([...]) method, which accepts a list of points. This might be useful when creating a TinyFlux database from a CSV of existing observations.

Hint

To save space in text-based storage instances (including CSVStorage), set the compact_key_prefixes argument to true in the .insert() and .insert_multiple() methods. This will result in the tag and field keys having a shorter t_ and f_ prefix in front of them in the storage layer rather than the default __tag__ and __field__ prefixes. Regardless of your choice, TinyFlux will handle Points with either prefix in the database.

Note

TinyFlux vs. TinyDB Alert!

In TinyDB there is a serious performance reason to use db.insert_multiple([...]) over db.insert(...) as every write in TinyDB is preceeded by a full read of the data. TinyFlux inserts are append-only and are not preceeded by a read. Therefore, there is no significant performance reason to use db.insert_multiple([...]) instead of db.insert(...). If you are using TinyFlux to capture real-time data, you should insert points into TinyFlux as you see them, with db.insert(...).

Example:

>>> from tinyflux import Point
>>> p = Point(
... measurement="air quality",
... time=datetime.fromisoformat("2020-08-28T00:00:00-07:00"),
... tags={"city": "LA"},
... fields={"aqi": 112}
...)
>>> db.insert(p)

To recap, these are the two methods supporting the insertion of data.

	Methods

	db.insert(point, compact_key_prefixes=False)

	Insert one Point into the database.

	db.insert_multiple([point, ...], compact_key_prefixes=False)

	Insert multiple Points into the database.

Querying Data

TinyFlux’s query syntax will be familiar to users of popular ORM tools. It is similar to that of TinyDB, but TinyFlux contains four different query types, one for each of a point’s four attributes.

The query types are:

	TimeQuery for querying points by time.

	MeasurementQuery for querying points by measurement.

	TagQuery for querying points by tags.

	FieldQuery for querying points by fields.

For the remainder of this section, query examples will be illustrated with the .search() method of a TinyFlux database. This is the most common way to query TinyFlux, and the method accepts a query and returns a list of Point objects matching the query. In addition, there are a handful of other database methods that take queries as argument and perform some sort of search. See the Exploring Data section for details.

Note

.search() will return Points in sorted time order by default. To return points in insertion order, pass the sorted=False argument, like: db.search(query, sorted=False).

Simple Queries

Examples of the four basic query types are below:

Measurement Queries

To query for a specific measurement, the right-hand side of the MeasurementQuery should be a Python str:

>>> from tinydb import MeasurementQuery
>>> Measurement = MeasurementQuery()
>>> db.search(Measurement == "city temperatures")

Tag Queries

To query for tags, the tag key of interest takes the form of a query attribute (following the .), while the tag value forms the right-hand side. An example to illustrate:

>>> from tinydb import TagQuery
>>> Tags = TagQuery()
>>> db.search(Tags.city == "Greenwich")

This will query the database for all points with the tag key of city mapping to the tag value of Greenwich.

Field Queries

Similar to tags, to query for fields, the field key takes the form of a query attribute, while the field value forms the right-hand side:

>>> from tinydb import FieldQuery
>>> Fields = FieldQuery()
>>> db.search(Fields.high > 50.0)

This will query the database for all points with the field key of high exceeding the value of 50.0.

Some tag keys and field keys are not valid Python identifiers (for example, if the key contains whitespace), and can alternately be queried with string attributes:

>>> from tinydb import TagQuery
>>> Tags = TagQuery()
>>> db.search(Tags["country name"] == "United States of America")

Time Queries

To query based on time, the “right-hand side” of the TimeQuery should be a timezone-aware datetime object:

>>> from tinydb import TimeQuery
>>> from datetime import datetime, timezone
>>> Time = TimeQuery()
>>> db.search(Time > datetime(2000, 1, 1, tzinfo=timezone.utc))

To query for a range of timestamps, it is most-performant to combine two TimeQuery instances with the & operator (for more details on compound queries, see Compound Queries and Query Modifiers below):

>>> q1 = Time > datetime(1990, 1, 1, tzinfo=timezone.utc)
>>> q2 = Time < datetime(2020, 1, 1, tzinfo=timezone.utc)
>>> db.search(q1 & q2)

Note

Queries can be optimized for faster results. See Tips for TinyFlux for details on optimizing queries.

Advanced Simple Queries

Some queries require transformations or comparisons that go beyond the basic operators like ==, <, or >. To this end, TinyFlux supports the following queries:

.map(…) <–> Arbitrary Transform Functions for All Query Types

The map() method will transform the tag/field value, which will be compared against the right-hand side value from the query.

>>> # Get all points with a even value for 'number_of_pedals'.
>>> def mod2(value):
... return value % 2
>>> Field = FieldQuery()
>>> db.search(Field.number_of_pedals.map(mod2) == 0)

or:

>>> # Get all points with a measurement starting with the letter "a".
>>> def get_first_letter(value):
... return value[0]
>>> Measurement = MeasurementQuery()
>>> db.search(Measurement.map(get_first_letter) == "a")

Warning

Resist the urge to build your own time range query using the .map() query method. This will result in slow queries. Instead, use two TimeQuery instances combined with the & or | operator.

.test(…) <–> Arbitrary Test Functions for All Query Types

The test() method will transform and test the tag/field value for truthiness, with no right-hand side value necessary.

>>> # Get all points with a even value for 'number_of_pedals'.
>>> def is_even(value):
... return value % 2 == 0
>>> Field = FieldQuery()
>>> db.search(Field.number_of_pedals.test(is_even))

or:

>>> # Get all points with a measurement starting with the letter "a".
>>> def starts_with_a(value):
... return value.startswith("a")
>>> Measurement = MeasurementQuery()
>>> db.search(Measurement.test(starts_with_a))

.exists() <–> Existence of Tag Key or Field Key

This applies to TagQuery and FieldQuery only.

>>> Field, Tag = TagQuery(), FieldQuery()
>>> db.search(Tag.user_name.exists())
>>> db.search(Field.age.exists())

.matches(…) and .search(…) <–> Regular Expression Queries for Measurements and Tag Values

RegEx queries that apply to MeasurementQuery and TagQuery only.

>>> # Get all points with a user name containing "john", case-invariant.
>>> Tag = TagQuery()
>>> db.search(Tag.user_name.matches('.*john.*', flags=re.IGNORECASE))

Compound Queries and Query Modifiers

TinyFlux also allows supports compound queries through the use of logical operators. This is particularly useful for time queries when a time range is needed.

>>> from tinydb import TimeQuery
>>> from datetime import datetime, timezone
>>> Time = TimeQuery()
>>> q1 = Time > datetime(1990, 1, 1, tzinfo=timezone.utc)
>>> q2 = Time < datetime(2020, 1, 1, tzinfo=timezone.utc)
>>> db.search(q1 & q2)

The three supported logical operators are logical-and, logical-or, and logical-not.

Logical AND (”&”)

>>> # Logical AND:
>>> Time = TimeQuery()
>>> t1 = datetime(2010, 1, 1, tzinfo=timezone.utc)
>>> t2 = datetime(2020, 1, 1, tzinfo=timezone.utc)
>>> db.search((Time >= t1) & (Time < t2)) # Get all points in 2010's.

Logical OR (“|”)

>>> # Logical OR:
>>> db.search((Time < t1) | (Time > t2)) # Get all points outside 2010's.

Logical NOT (“~”)

>>> # Negate a query:
>>> Tag = TagQuery()
>>> db.search(~(Tag.city == 'LA')) # Get all points whose city is not "LA".

Hint

When using & or |, make sure you wrap your queries on both sides with parentheses or Python will confuse the syntax.

Also, when using negation (~) you’ll have to wrap the query you want to negate in parentheses.

While not aesthetically pleasing to the eye, the reason for these parenthesis is that Python’s binary operators (&, |, and ~) have a higher operator precedence than comparison operators (==, >, etc.). For this reason, syntax like ~User.name == 'John' is parsed by Python as (~User.name) == 'John' which will throw an exception. See the Python docs on operator precedence [https://docs.python.org/3/reference/expressions.html#operator-precedence] for details.

Note

You cannot use and as a substitue for &, or as a subsititue for |, or not as a substitute for ~. The and, or, and not keywords are reserved in Python and cannot be overridden, as the &, |, and ~ operators have been for TinyFlux queries.

The query and search operations covered above:

	Simple Queries

	MeasurementQuery() == my_measurement

	Match any Point with the measurement my_measurement

	TimeQuery() < my_time_value

	Match any Point with a timestamp prior to my_time_value

	TagQuery().my_tag_key == my_tag_value

	Matches any Point with a tag key of my_tag_key mapping to
a tag value of my_tag_value

	FieldQuery().my_field_key == my_field_value

	Matches any Point with a field key of my_field_key mapping
to a field value of my_field_value

	Advanced Simple Queries

	FieldQuery().my_field.exists()

	Match any Point where a field called my_field exists

	FieldQuery().my_field.map()

	Transform and tag or field value for comparison to a
right-hand side value.

	FieldQuery().my_field.test(func, *args)

	Matches any Point for which the function returns
True

	FieldQuery().my_field.matches(regex)

	Match any Point with the whole field matching the
regular expression

	FieldQuery().my_field.search(regex)

	Match any Point with a substring of the field matching
the regular expression

	Compound Queries and Query Modifiers

	~(query)

	Match Points that don’t match the query

	(query1) & (query2)

	Match Points that match both queries

	(query1) | (query2)

	Match Points that match at least one of the queries

Exploring Data

An understanding of how queries in TinyFlux work can be applied to several database operations.

Query-based Exploration

The primary method for query usage is through the .search(query). Other useful search methods are below:

.contains(query) <–> Check if the database contains any Points matching a Query

This returns a simple boolean value and is the fastest search op.

>>> # Check if db contains any Points for Los Angeles after the start of 2022.
>>> from datetime import datetime
>>> from zoneinfo import ZoneInfo
>>> q1 = TagQuery().city == "Los Angeles"
>>> q2 = TimeQuery() >= datetime(2022, 1, 1, tzinfo = ZoneInfo("US/Pacific"))
>>> db.contains(q1 & q2)

.count(query) <–> Count the number of Points matching a Query

This returns an integer.

>>> # Count the number of Points for Los Angeles w/ a temp over 100 degrees.
>>> q1 = TagQuery().city == "Los Angeles"
>>> q2 = FieldQuery().temperature_f > 100.0
>>> db.count(q1 & q2)

.get(query) <–> Get the first Point in the database matching a Query

This returns a Point instance, or None if no Points were found.

>>> # Return the first Point in the db for LA w/ more than 1 inch of precipitaion.
>>> q1 = TagQuery().city == "Los Angeles"
>>> q3 = FieldQuery().preciptation > 1.0
>>> db.get(q1 & q3)

.search(query) <–> Get all the Points in the database matching a Query

This is the primary method for querying the database, and returns a list of Point instances, sorted by timestamp.

>>> # Get all Points in the DB for Los Angeles in 2022 in which the AQI was "hazardous".
>>> from datetime import datetime
>>> from zoneinfo import ZoneInfo
>>> q1 = TagQuery().city == "Los Angeles"
>>> q2 = TimeQuery() >= datetime(2022, 1, 1, tzinfo = ZoneInfo("US/Pacific"))
>>> q3 = TimeQuery() < datetime(2023, 1, 1, tzinfo = ZoneInfo("US/Pacific"))
>>> q4 = FieldQuery().air_quality_index > 100 # hazardous is over 100
>>> db.search(q1 & q2 & q3 & q4)

.select(attributes, query) <–> Get attributes from Points in the database matching a Query

This returns a list of attributes from Points matching the Query. Similar to SQL “select”.

>>> # Get the time, city, and air-quality index ("AQI") for all Points with an AQI over 100.
>>> q = FieldQuery().aqi > 100
>>> db.select("fields.aqi", q)
[132]
>>> db.select(("time", "city", "fields.aqi"), q)
[(datetime.datetime(2020, 9, 15, 8, 0, tzinfo=datetime.timezone.utc), "Los Angeles", 132)]

Attribute-based Exploration

The database can also be explored based on attributes, as opposed to queries.

.get_measurements() <–> Get all the measurements in the database

This returns an alphabetically-sorted list of measurements in the database.

>>> db.insert(Point(measurement="cities"))
>>> db.insert(Point(measurement="stock prices"))
>>> db.get_measurements()
>>> ["cities", "stock prices"]

.get_field_keys() <–> Get all the field keys in the database

This returns an alphabetically-sorted list of field keys in the database.

>>> db.insert(Point(fields={"temp_f": 50.2}))
>>> db.insert(Point(fields={"price": 2107.44}))
>>> db.get_field_keys()
["temp_f", "price"]

.get_field_values(field_key) <–> Get all the field values in the database

This returns all the values for a specified field_key, in order of insertion order in the database. This might be useful for determining a range of values a field could take.

>>> db.insert(Point(fields={"temp_f": 50.2}))
>>> db.insert(Point(fields={"price": 2107.44}))
>>> db.get_field_values("temp_f")
[50.2]

.get_tag_keys() <–> Get all the tag keys in the database

This returns an alphabetically-sorted list of tag keys in the database.

>>> db.insert(Point(tags={"city": "LA"}))
>>> db.insert(Point(tags={"company": "Amazon.com, Inc."}))
>>> db.get_tag_keys()
["city", "company"]

.get_tag_values([tag_key]) <–> Get all the tag values in the database

This returns all the values for a list of specified tag keys.

>>> db.insert(Point(tags={"city": "LA"}))
>>> db.insert(Point(tags={"company": "Amazon.com, Inc."}))
>>> db.get_tag_values()
{"city": ["Los Angeles"], "company": ["Amazon.com, Inc."]}

.get_timestamps() <–> Get all the timestamps in the database

This returns all the timestamps in the database by insertion order.

>>> from datetime import datetime
>>> from zoneinfo import ZoneInfo
>>> time_2022 = datetime(2022, 1, 1, tzinfo = ZoneInfo("US/Pacific"))
>>> time_1900 = datetime(1900, 1, 1, tzinfo = ZoneInfo("US/Pacific"))
>>> db.insert(Point(time=time_2022))
>>> db.insert(Point(time=time_1900))
>>> db.get_timestamps()
[datetime.datetime(2022, 1, 1, 8, 0, tzinfo=datetime.timezone.utc), datetime.datetime(1900, 1, 1, 8, 0, tzinfo=datetime.timezone.utc)]

Full Dataset Exploration

Sometimes access to all the data is needed. There are two methods for doing so- one that brings in all the database items into memory, and one that provides a generator that iterates over items one at a time.

.all() <–> Get all of the points in the database

This returns all the points in the database by timestamp order. To retrieve by insertion order, pass sorted=False argument. This will bring all of the data into memory at once.

>>> db.all() # Points returned sorted by timestamp.

or

>>> db.all(sorted=False) # Points returned by insertion order.

iter(db) <–> Iterate over all the points in the database

This returns a generator over which point-by-point logic can be applied. This does not pull everything into memory.

>>> iter(db)
<generator object TinyFlux.__iter__ at 0x103e3d970>
>>> for point in db:
... print(point)
Point(time=2022-01-01T08:00:00+00:00, measurement=_default)
Point(time=1900-01-01T08:00:00+00:00, measurement=_default)

The list of all the data exploration methods covered above:

	Query-based Exploration

	db.contains(query)

	Whether or not the database contains any points matching a query

	db.count(query)

	Count the number of points matching a query

	db.get(query)

	Get one point from the database matching a query

	db.search(query)

	Get all points from the database matching a query

	db.select(attrributes, query)

	Get attributes froms points matching a query

	Attribute-based Exploration

	db.get_measurements()

	Get the names of all measurements in the database

	db.get_timestmaps()

	Get all the timestamps from the database, by insertion order

	db.get_tag_keys()

	Get all tag keys from the database

	db.get_tag_values()

	Get all tag values from the database

	db.get_field_keys()

	Get all field keys from the database

	db.get_field_values()

	Get all field values from the database

	Full Dataset Exploration

	db.all()

	Get all points in the database

	iter(db)

	Return a generator for all points in the database

Updating Points

Though updating time series data tends to occur much less frequently than with other types of data, TinyFlux nonetheless supports the updating of data with two methods: 1. Update by query with the update() method, and 2. Update all points with the update_all() method. measurement, time, tags, and/or fields are updated on an individual basis through the associated keyword arguments to these two methods. The values for these arguments are either static values (like a string, float, integer, or boolean), or a Callable returning static values. See below for examples.

Note

If you are a developer, or are otherwise interested in how TinyFlux performs updates behind the scenes, see the TinyFlux Design Principles page.

To update individual points in TinyFlux, first provide a query to the update() method, followed by one or more attributes to update and their values as keyword arguments. For example, to update the measurement names in the database for all points whose measurement value is “cities” to “US Metros”, use a static value to the measurement keyword argument:

>>> Measurement = MeasurementQuery()
>>> db.update(Measurement == "cities", measurement="US Metros")

To update all timestamps for the measurement “US Metros” to be shifted backwards in time by one year, use a callable as the time keyword argument instead of a static value:

>>> from datetime import timedelta
>>> Measurement = MeasurementQuery()
>>> db.update(Measurement == "US Metros", time=lambda x: x - timedelta(days=365))

To change all instances of “CA” to “California” in a point’s tag set for the “US Metros” measurement:

>>> Measurement = MeasurementQuery()
>>> def california_updater(tags):
... if "state" in tags and tags["state"] == "CA":
... return {**tags, "state": "California"}
... else:
... return tags
>>> db.update(Measurement == "US Metros", tags=california_updater)

Field updates occur much the same way as tags. To update all items in the database, use update_all(). For example, to convert all temperatures from Fahrenheit to Celcius if the field temp exists:

>>> def fahrenheit_to_celcius(fields):
... if "temp" in fields:
... temp_f = fields["temp"]
... temp_c = (temp_f - 32.0) * (5/9)
... return {**fields, "temp": temp_c}
... else:
... return fields
>>> db.update_all(fields=fahrenheit_to_celcius)

Note

Updating data with .update() or .update_all() through the tags or fields arguments will not remove tags or fields, even if they are not returned when using a Callable as the updater. This is consistent with the Python dict API [https://docs.python.org/3/library/stdtypes.html#dict.update], in which keys can be overwritten, but not deleted. To remove tags and fields completely, see Removing Tags and Fields with Update below.

Warning

Like all other operations in TinyFlux, you cannot roll back the actions of update() or update_all(). There is no confirmation step, no access-control mechanism that prevents non-admins from performing this action, nor are there automatic snapshots stored anywhere. If you need these kinds of features, TinyFlux is not for you.

to recap, these are the two methods supporting the updating of data.

	Methods

	db.update(query, ...)

	Update any point matching the input query.

	db.update_all(...)

	Update all points.

Removing Tags and Fields with Update

TinyFlux supports the removal of individual tag and field key/values through the unset_tags and unset_fields arguments to .update() and .update_all(). The values can be either individual strings, or lists of strings. See below for examples.

The following will remove all tags with the key of “city” from the database:

>>> db.update_all(unset_tags="city")

The following will remove all tags with the keys of “state” and “country” from the database:

>>> db.update_all(unset_tags=["state", "country"])

The following will remove all tags with the key of “temperature” from all Points in the “bedroom” measurement:

>>> db.update(MeasurementQuery() == "bedroom", unset_tags=["temperature"])

Warning

Like all other operations in TinyFlux, you cannot roll back the actions of update() or update_all(). There is no confirmation step, no access-control mechanism that prevents non-admins from performing this action, nor are there automatic snapshots stored anywhere. If you need these kinds of features, TinyFlux is not for you.

To recap, these are the two methods supporting the removal of individual tags and fields from points.

	Methods

	db.update(query, unset_tags=..., unset_fields=...)

	Remove the tags and fields from points matching the query.

	db.update_all(query, unset_tags=..., unset_fields=...)

	Remove specified tags and fields from all points.

Removing Points

TinyFlux supports the removal of points with two methods. To remove by query, the remove() method is provided, and to remove all, use the remove_all() method. See below for examples.

Note

If you are a developer, or are otherwise interested in how TinyFlux performs deletes behind the scenes, see the TinyFlux Design Principles page.

The following will remove all points with the measurement value of “US Metros”:

>>> Measurement = MeasurementQuery()
>>> db.remove(Measurement == "US Metros")

The following is an example of a manual time-based eviction.

>>> from datetime import datetime, timedelta, timezone
>>> Time = TimeQuery()
>>> t = datetime.now(timezone.utc) - timedelta(days=7)
>>> # Remove all points older that seven days.
>>> db.remove(Time < t)

To remove everything in the database , invoke remove_all():

>>> db.remove_all()

Warning

Like all other operations in TinyFlux, you cannot roll back the actions of remove() or remove_all(). There is no confirmation step, no access-control mechanism that prevents non-admins from performing this action, nor are there automatic snapshots stored anywhere. If you need these kinds of features, TinyFlux is not for you.

To recap, these are the two methods supporting the removal of data.

	Methods

	db.remove(query)

	Remove any point matching the input query.

	db.remove_all()

	Remove all points.

Removing Tags and Fields

TinyFlux supports the removal of individual tag and field key/values through the unset_tags and unset_fields arguments to .update() and .update_all(). The values can be either individual strings, or lists of strings. See below for examples.

The following will remove all tags with the key of “city” from the database:

>>> db.update_all(unset_tags="city")

The following will remove all tags with the keys of “state” and “country” from the database:

>>> db.update_all(unset_tags=["state", "country"])

The following will remove all tags with the key of “temperature” from all Points in the “bedroom” measurement:

>>> db.update(MeasurementQuery() == "bedroom", unset_tags=["temperature"])

Warning

Like all other operations in TinyFlux, you cannot roll back the actions of update() or update_all(). There is no confirmation step, no access-control mechanism that prevents non-admins from performing this action, nor are there automatic snapshots stored anywhere. If you need these kinds of features, TinyFlux is not for you.

To recap, these are the two methods supporting the removal of individual tags and fields from points.

	Methods

	db.update(query, unset_tags=..., unset_fields=...)

	Remove the tags and fields from points matching the query.

	db.update_all(query, unset_tags=..., unset_fields=...)

	Remove specified tags and fields from all points.

Working with Measurements

TinyFlux supports working with multiple measurements. A measurement is analagous to a “table” in traditional RDMS. By accessing TinyFlux through a measurement, the same database API is utilized, but with a filter for the passed measurement.

To access TinyFlux through a measurment, use db.measurement(name):

>>> db = TinyFlux("my_db.csv")
>>> m = db.measurement("my_measurement")
>>> m.insert(Point(time=datetime(2022, 1, 1, tzinfo=timezone.utc), tags={"my_tag_key": "my_tag_value"}))
>>> m.all()
[Point(time=2022-01-01T00:00:00+00:00, measurement=my_measurement, tags=my_tag_key:my_tag_value)]
>>> for point in m:
>>> print(point)
Point(time=2022-01-01T00:00:00+00:00, measurement=my_measurement, tags=my_tag_key:my_tag_value)

Note

TinyFlux uses a measurement named _default as the default measurement.

To remove a measurement and all its points from a database, use:

>>> db.drop_measurement('my_measurement')

or

>>> m.remove_all()

To get a list with the names of all measurements in the database:

>>> db.get_measurements()
["my_measurement"]

Timezones in TinyFlux

Timestamps going in and out of TinyFlux are of the Python datetime type. At the file storage layer, TinyFlux stores these timestamps as ISO formatted strings in UTC. For seasoned Python users, this will be a familiar practice, as they will already be using timezone aware datetime objects in all cases and used to converting to-and-from UTC.

Hint

If you aren’t already using timezone-aware datetime objects, there is no better time to start than now.

Hint

TLDR: All timestamps should be input as timezone-aware datetime objects in the UTC timezone. If you need to keep information about the local timezone of the observation, store it as a tag. Skip to example 5 below for proper initialization.

To illustrate the way time is handled in TinyFlux, below are the five ways time could potentially be initialized by a user. The fifth and final example is “best practice”:

	time is not set by the user when the Point is initialized so its default value is None. AFTER it is inserted into TinyFlux, it is assigned a UTC timestamp corresponding to the time of insertion.

>>> from tinyflux import Point, TinyFlux
>>> db = TinyFlux("my_db.csv") # an empty db
>>> p = Point()
>>> p.time is None
True
>>> db.insert(p)
>>> p.time
datetime.datetime(2021, 10, 30, 13, 53, 552872, tzinfo=datetime.timezone.utc)

	time is set with a value, but it is not a datetime object. TinyFlux raises an exception.

>>> Point(time="2022-01-01")
ValueError: Time must be datetime object.

	time is set with a datetime object that is “timezone-naive”. TinyFlux considers this time to be local to the timezone of the computer that is running TinyFlux and will convert this time to UTC using the astimezone attribute of the datetime module upon insertion. This will lead to confusion down the road if TinyFlux is running on a remote computer, or the user was annotating data for points corresponding to places in other timezones.

>>> from datetime import datetime
>>> # Example: Our computer is in Californa, but we are working with a dataset of
>>> # air quality measurements for Beijing, China.
>>> # Here, AQI was measured at 1pm local time in Beijing on Aug 28, 2021.
>>> p = Point(
... time=datetime(2021, 8, 28, 13, 0), # 1pm, datetime-naive
... tags={"city": "beijing"},
... fields={"aqi": 118}
...)
>>> p.time
datetime.datetime(2021, 8, 28, 13, 0)
>>> # Insert the point into the database.
>>> db.insert(p)
>>> # The point is cast to UTC, assuming the time was local to California, not Beijing.
>>> p.time
datetime.datetime(2021, 8, 28, 20, 0, tzinfo=datetime.timezone.utc)

	time is set with a datetime object that is timezone-aware but the timezone is not UTC- TinyFlux casts the time to UTC for internal storage and retrieval and the original timezone is lost (it is up to the user to cast the timezone again after retrieval).

>>> from tinyflux import Point, TinyFlux
>>> from datetime import datetime
>>> from zoneinfo import ZoneInfo
>>> db = TinyFlux("my_db.csv") # an empty db
>>> la_point = Point(
... time=datetime(2000, 1, 1, tzinfo=ZoneInfo("US/Pacific")),
... tags={"city": "Los Angeles"}
... fields={"temp_f": 54.0}
...)
>>> ny_point = Point(
... time=datetime(2000, 1, 1, tzinfo=ZoneInfo("US/Eastern")),
... tags={"city": "New York City"}
... fields={"temp_f": 15.0}
...)
>>> db.insert_multiple([la_point, ny_point])
>>> # Notice the time attributes no longer carry the timezone information:
>>> la_point.time
datetime.datetime(2000, 1, 1, 8, 0, tzinfo=datetime.timezone.utc)
>>> ny_point.time
datetime.datetime(2000, 1, 1, 5, 0, tzinfo=datetime.timezone.utc)

Hint

If you need to keep the original, non-UTC timezone along with the dataset, consider adding a tag to your point indicating the timezone, for easier conversion after retrieval. TinyFlux will not assume nor attempt to store the timezone of your data for you.

	time is set with a datetime object that is timezone-aware and the timezone is UTC. This is the easiest way to handle time. If needed, infomation about the timezone is stored in a tag.

>>> from datetime import datetime, timezone
>>> from tinyflux import TinyFlux, Point
>>> from zoneinfo import ZoneInfo
>>> # Time now is 10am in Los Angeles, which is 6pm UTC:
>>> t = datetime.now(timezone.utc)
>>> t
datetime.datetime(2022, 11, 9, 18, 0, 0, tzinfo=datetime.timezone.utc)
>>> # Store the time in UTC, but keep the timezone as a tag for later use.
>>> p = Point(
... time=t,
... tags={"room": "bedroom", "timezone": "America/Los_Angeles"},
... fields={"temp": 72.0}
...)
>>> # Time is still UTC:
>>> p.time
datetime.datetime(2022, 11, 9, 18, 0, 0, tzinfo=datetime.timezone.utc)
>>> # To cast back to local time in Los Angeles:
>>> la_timezone = ZoneInfo(p.tags["timezone"])
>>> p.time.astimezone(la_timezone)
datetime.datetime(2022, 11, 9, 10, 0, tzinfo=zoneinfo.ZoneInfo(key='America/Los_Angeles'))

Tips for TinyFlux

Below are some tips to get the most out of TinyFlux.

Saving Space

If you are using a text-based storage layer (such as the default CSVStorage) keep in mind that every character requires usually one (but up to four) bytes of memory for storage in a UTF-8 encoding. To save space, here are a few tips:

	Keep measurement names, tag keys, and field keys short and concise.

	Precision matters! Even more so with text-backed storage. 1.0000 requires twice as much space to store compared to 1.0, and 5x more space than 1.

	When inserting points into TinyFlux, make sure to set the compact_key_prefixes option to True (e.g. db.insert(my_point, compact_key_prefixes=True)). This saves three bytes per tag key/value pair and five bytes per field key/value pair.

If your dataset is approaching 1 GB in size, keep reading.

Dealing with Growing Datasets

As concurrency is not a feature of TinyFlux, a growing database will incur increases in query and index-building times. When queries start to slow down a workflow, it might be time to “shard” or denormalize the data, or simply upgrade to a database server like InfluxDB.

For example, if a TinyFlux database currently holds Points for two separate measurements, consider making two separate databases, one for each measurement:

>>> from tinyflux import TinyFlux, Point, MeasurementQuery
>>> from datetime import datetime, timedelta, timezone
>>> db = TinyFlux("my_big_db.csv") # a growing db with two measurements
>>> db.count(MeasurementQuery() == "measurement_1")
70000
>>> db.count(MeasurementQuery() == "measurement_2")
85000
>>> new_db = TinyFlux("my_new_single_measurement_db.csv") # a new empty db
>>> for point in db:
>>> if point.measurement == "measurement_2":
>>> new_db.insert(point)
>>> db.remove(MeasurementQuery() == "measurement_2")
85000
>>> len(db)
70000
>>> len(new_db)
85000

Hint

When queries and indexes slow down a workflow, consider creating separate databases. Or, just migrate to InfluxDB.

Optimizing Queries

Unlike TinyDB, TinyFlux never pulls in the entirety of its data into memory (unless the .all() method is called). This has the benefit of reducing the memory footprint of the database, but means that database operations are usually I/O bound. By using an index, TinyFlux is able to construct a matching set of items from the storage layer without actually reading any of those items. For database operations that return Points, TinyFlux iterates over the storage, collects the items that belong in the set, deserializes them, and finally returns them to the caller.

This utlimately means that the smaller the set of matches, the less I/O TinyFlux must perform.

Hint

Queries that return smaller sets of matches perform best.

Warning

Resist the urge to build your own time range query using the .map() query method. This will result in slow queries. Instead, use two TimeQuery instances combined with the & or | operator.

Keeping The Index Intact

TinyFlux must build an index when it is initialized as it currently does not save the index upon closing. If the workflow for the session is read-only, then the index state will never be modified. If, however, a TinyFlux session consists of a mix of writes and reads, then the index will become invalid if at any time, a Point is inserted out of time order.

>>> from tinyflux import TinyFlux, Point
>>> from datetime import datetime, timedelta, timezone
>>> db = TinyFlux("my_db.csv")
>>> t = datetime.now(timezone.utc) # current time
>>> db.insert(Point(time=t))
>>> db.index.valid
True
>>> db.insert(Point(time=t - timedelta(hours=1))) # a Point out of time order
>>> db.index.valid
False

If auto-index is set to True (the default setting), then the next read will rebuild the index, which may just seem like a very slow query. For smaller datasets, reindexing is usually not noticeable.

Hint

If possible, Points should be inserted into TinyFlux in time-order.

Elements of Data in TinyFlux

Data elements and terms in TinyFlux mostly mirror those of InfluxDB. The following is a list of TinyFlux terms and concepts. Click on a term, or read on below.

	Point

	Timestamp

	Measurement

	Tag Set

	Tag Key

	Tag Value

	Field Set

	Field Key

	Field Value

Point

The atomic data unit of TinyFlux. Consists of a Measurement, Timestamp, Tag Set, and a Field Set. In the primary disk CSV storage, all attributes are serialized to unicode using the system default encoding.

In Python:

>>> from tinyflux import Point
>>> from datetime import datetime, timezone
>>> p = Point(
... time=datetime.now(timezone.utc),
... measurement="thermostat home",
... tags={
... "location": "bedroom",
... "scale": "fahrenheit",
... },
... fields={
... "temp": "70.0",
... }
...)

On disk:

2022-05-13T23:19:46.573233,thermostat home,_tag_location,bedroom,_tag_scale,fahrenheit,_field_temp,70.0

Timestamp

The time associated with a Point. As an attribute of a Point, it is a Python datetime [https://docs.python.org/3/library/datetime.html] object. Regardless of its state, when it is inserted into a TinyFlux database, it will become a timezone aware object cast to the UTC timezone.

On disk, it is serialized as a ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] formatted string and occupies the first column of the default CSV storage class.

In Python:

>>> Point()

On disk:

2022-05-13T23:19:46.573233,_default

For details on time’s relationship with TinyFlux, see Timezones in TinyFlux.

Measurement

A measurement is a collection of Points, much like a table in a relational database. It is a string in memory and on disk. TinyFlux provides a convenient method for interacting with the Points through the db.measurement(...) method.

In Python:

>>> Point(measurement="cities")

On disk:

2022-05-13T23:19:46.573233,cities

See Working with Measurements for more details.

Tag Set

A tag set (or “tags”) is the collection of tag keys and tag values belonging to a Point. TinyFlux is schemaless, so any Point can contain zero, one, or more tag keys and associated tag values. Tag keys and tag values are both strings. Tag keys and their values map to Points with a hashmap in a TinyFlux index, providing for efficient retrieval. In a well-designed TinyFlux database, the number of distinct tag values should not be as numerous as the field values. On disk, tag sets occupy side-by-side columns- one for the tag key and one for the tag value.

In Python:

>>> Point(
... tags={
... "city": "LA",
... "neighborhood": "Chinatown",
... "food": "good",
... }
...)

On disk:

2022-05-13T23:19:46.573233,_default,_tag_city,LA,_tag_neighborhood,Chinatown,_tag_food,good

Tag Key

A tag key is the identifier for a Tag Value in a Tag Set. On disk, a tag key is prefixed with _tag_ (default) or t_ (compact).

In the following, the tag key is city.

>>> tags = {"city": "Los Angeles"}

Tag Value

A tag value is the associated value for a tag key in a Tag Set. On disk, it occupies the column next to that of the its tag key.

In the following, the tag value is Los Angeles.

>>> tags = {"city": "Los Angeles"}

Field Set

A field set (or “fields”) is the collection of field keys and field values belonging to a Point. TinyFlux is schemaless, so any Point can contain zero, one, or more field keys and associated field values. Field keys are strings while field values are numeric (in Python, float or int). Field keys and their values do not map to Points in a TinyFlux index as it is assumed that the number of their distinct values is too numerous. On disk, field sets occupy side-by-side columns- one for the field key and one for the field value.

In Python:

>>> Point(
... fields={
... "num_restaurants": 12,
... "num_boba_shops": 3,
... }
...)

On disk:

2022-05-13T23:19:46.573233,_default,_field_num_restaurants,12,_field_num_boba_shops,3

Field Key

A field key is the identifier for a Field Value in a Field Set. On disk, a field key is prefixed with _field_ (default) or f_ (compact).

In the following, the field key is num_restaurants.

>>> fields = {"num_restaurants": 12}

Field Value

A field value is the associated value for a Field Key in a Field Set. On disk, it occupies the column next to that of the its field key.

In the following, the field value is 12.

>>> fields = {"num_restaurants": 12}

TinyFlux Design Principles

InfluxDB implements optimal design principles for time series data. Some of these design principles have associated tradeoffs in performance. Design principles are discussed below.

	Prioritize High-Speed Writes

	Minimize Memory Footprint

	Prioritize Searches for Time

	Schemaless design

	IDs and Duplicates

Prioritize High-Speed Writes

Time series data is often write-heavy, and in cases when a time series database is used as a real-time data store, the frequency of writes can be quite high. TinyFlux has been designed to minimize any disruptions to writing to disk in a single thread in as fast a manner as possible. To accomplish this, TinyFlux utilizes a default CSV store which supports nearly instantaneous appends, regardless of underlying file size. TinyFlux will also invalidate its index if upon any insert, the timestamp for a Point preceeds that of the most-recent insert. TinyFlux will not attempt to rebuild its index upon invalidation during a write op.

Minimize Memory Footprint

While it would be great if databases could live in memory, this is not a reasonable design choice for everyday users. TinyFlux has been designed to never read the entire contents of its storage into memory unless explicitly asked to do so, and to balance the
need for fast querying with a small memory footprint, TinyFlux builds an internal index. This index is generally about 80% smaller than the memory required to hold the entire dataset in memory, and still allows for query performance to equal or surpass that of keeping the database in memory. For removals and updates, TinyFlux still visits all items in storage, but evaluates each item one at a time and writes to temporary storage before finally replacing the original storage with the updated one. TinyFlux also does not rewrite data in time-ascending order, as is the case with InfluxDB, as this would require either the entire dataset to be read into memory, or a computationally expensive eternal merge sort to be executed on disk.

Prioritize Searches for Time

TinyFlux builds an index on time by keeping a sorted container data structure of timestamps in memory, and searches over the index quickly by parsing queries and invoking optimized search algorithms for sorted containers to retrive candidate Points quickly. This reduces potentially slow and exhaustive evaluations significantly.

Schemaless design

Even though row-based data stores like CSV are not thought of as “schemaless”, TinyFlux nonetheless allows for datasets to have flexible schemas so that signals that change over time, or multiple signals from multiple sources, can all occupy space in the same datastore. This allows the user to focus less on database design and more on capturing and analyzing data.

IDs and Duplicates

TinyFlux does not keep IDs as it is assumed data points are unique by their combination of timestamp and tag set. To this end, TinyFlux also does not currently have a mechanism for checking for duplicates. Searches matching duplicate Points will return duplicates.

TinyFlux Internals

Storage

TinyFlux ships with two types of storage:

	A CSV store with is persistent to disk, and

	A memory store which lasts only as long as the process in which it was declared.

To use the CSV store, pass a filepath during TinyFlux initialization.

>>> my_database = "db.csv"
>>> db = TinyDB(my_database)

To use the memory store:

>>> from tinydb.storages import MemoryStorage
>>> db = TinyDB(storage=MemoryStorage)

In nearly all cases, users should opt for the former as it persists the data on disk.

The CSV format is familiar to most, but at its heart it’s just a row-based datastore that supports sequential iteration and append-only writes. Contrast this with JSON, which–while fast once loaded into memory–must be loaded entirely into memory and does not support appending.

The usage of CSV offers TinyFlux two distinct advantages for typical time-series workflows:

	Appends do not require reading of data, and occur in a constant amount of time regardless of the size of the underlying database.

	Sequential iteration allows for a full read of the data without having to simulateously keep the entirety of the data store in memory all at once. Logic can be performed on an individual row, and results kept or discarded as desired.

TinyFlux storage is also designed to be extensible.

In case direct access to the storage instance is desired, use the storage property of the TinyFlux instance.

>>> from tinyflux.storages import MemoryStorage
>>> db = TinyFlux(storage=MemoryStorage)
>>> my_data = db.storage.read()

For more disucssion on storage, see TinyFlux Design Principles.

Indexing in TinyFlux

By default, TinyFlux will build an internal index when the database is initialized, and again at any point when a read operation is performed after the index becomes invalid. As TinyFlux’s primary storage format is a CSV that is read from disk sequentially, the index allows for efficient retrieval operations that greatly reduce function calls, query evaluations, and the need to deserialize and reserialize data.

Note

An index becomes invalid when points are inserted out-of-time-order. When the auto-index parameter of TinyFlux is set to True, the next read operation will rebuild the index.

Building an index is a non-trivial routine that occurs in the same process that TinyFlux is running in. For smaller amounts of data in a typical analytics workflow, building an index may not even be noticeable. As the database grows, the time needed to build or rebuild the index grows linearly. Automatically rebuilding of the index can be turned off by setting auto_index to False in the TinyFlux constructor:

>>> db = TinyFlux("my_database.csv", auto_index=False)

Setting this value to False will remove any indexing-building, but queries will slow down considerably.

A reindex can be manually triggered should the need arise:

>>> db.reindex()

Warning

There is usually only one reason to turn off auto-indexing and that is when you are initializing the database instance and need to immediately start inserting points, as might be the case in IOT data-capture applications. In all other cases, particularly when reads will make up the majority of your workflow, you should leave auto-index set to True.

At some level of data, the building of the index will noticeably slow down a workflow. For tips on how to address growing data, see Tips for TinyFlux.

TinyFlux API

See Getting Started to get TinyFlux up and running with writing and querying data.

Jump to an API section:

	TinyFlux Database API

	Point API

	Queries API

	Measurement API

	Index API

	Storages API

	Utils API

 Philosophy

Philosophy

Like TinyDB, TinyFlux aims to be simple and fun to use.

Like InfluxDB, TinyFlux places time before all else.

Simplicity, enjoyment, and time- these are the three guiding principles of TinyFlux, both in its usage and in its development.

Finally, when in doubt, over-document your code.

 Guidelines

Guidelines

New ideas, improvements, bugfixes, and new developer tools are always welcome. Follow these guidelines before getting started:

	Make sure to read Getting Started and Tooling and Conventions.

	Check GitHub [https://github.com/citrusvanilla/tinyflux] for existing open issues, or open a new issue to begin a discussion.

	To get started on a pull request, fork the repository on GitHub, create a new branch, and make updates.

	Write unit tests, ensure the code is 100% covered, update documentation where necessary, and format and style the code correctly.

	Send a pull request.

 Tooling and Conventions

Tooling and Conventions

TinyFlux should be developed locally with the latest stable version of Python on any platform (3.10 as of this writing).

Versioning

TinyFlux follows semantic versioning [https://semver.org/] guidelines for releases.

Workflow

TinyFlux development follows the branch-based workflow known as “GitHub flow [https://docs.github.com/en/get-started/quickstart/github-flow]”.

Continuous Integration and Deployment

TinyFlux uses GitHub Actions [https://docs.github.com/en/actions] for its CI/CD workflow.

Coding Conventions

TinyFlux conforms to PEP 8 [https://peps.python.org/pep-0008/] for style, and Google Python Style Guide [https://google.github.io/styleguide/pyguide.html] for docstrings. TinyFlux uses common developer tools to check and enforce this. These checks should be performed locally before pushing to GitHub, as they will eventually be enforced with GitHub Actions (see .github/workflows in the TinyFlux GitHub repository for details).

Formatting

TinyFlux uses standard configuration black [https://black.readthedocs.io/en/stable/] for code formatting, with an enforced line-length of 80 characters.

After installing the project requirements:

/tinyflux $ black .

Style

TinyFlux uses standard configuration flake8 [https://flake8.pycqa.org/en/latest/] for style enforcement, with an enforced line-length of 80 characters.

After installing the project requirements:

/tinyflux $ flake8 .

Typing

TinyFlux uses standard configuration mypy [https://mypy.readthedocs.io/en/stable/] for static type checking.

After installing the project requirements:

/tinyflux $ mypy .

Documentation

TinyFlux hosts documentation on Read The Docs [https://readthedocs.org/].

TinyFlux uses Sphinx [https://www.sphinx-doc.org/en/master/] for documentation generation, with a customized Read the Docs Sphinx Theme [https://sphinx-rtd-theme.readthedocs.io/en/stable/], enabled for “Google-style” docstrings.

After installing the project requirements:

/tinyflux $ cd docs
/docs $ make html
/docs $ open build/html/index.html

Documentation is deployed to ReadTheDocs through third-party integration with GitHub. Commits to the master branch trigger builds and deployment with RTD.

Testing

TinyFlux aims for 100% code coverage through unit testing.

Test Framework

TinyFlux uses pytest [https://docs.pytest.org/en/7.1.x/] as its testing framework.

After installing the project requirements:

/tinyflux $ pytest

Coverage

TinyFlux uses Coverage.py [https://coverage.readthedocs.io/en/6.3.3/] for measuring code coverage.

/tinyflux $ coverage run -m pytest
/tinyflux $ coverage report -m

 Changelog

Changelog

v0.4.0 - March 27, 2023

	Tags and Fields can be removed from individual points. See the documentation [https://tinyflux.readthedocs.io/en/latest/updating-data.html#removing-tags-and-fields-with-update] for more (resolves issue #27).

v0.3.1 (2023-3-27)

	Fixed bug that allowed user to delete key/field tags with .update() and .update_all(). (resolves issue #36).

v0.3.0 (2023-3-21)

	Tag and field keys can be compacted when using CSVStorage, saving potentially many bytes per Point (resolves issue #32).

	Fixed bug that causes tag values of ‘’ to be serialized as “_none” (resolves issue #33).

v0.2.6 (2023-3-9)

	TinyFlux is now PEP 561 compliant (resolves issue #31).

v0.2.4 (2023-2-15)

	Fix bug that prevents updating Points when using a CSVStorage instance.

v0.2.1 (2022-11-22)

	Fix bug that caused values of 0.0 to be serialized as None/null rather than “0.0”.

v0.2.0 (2022-11-09)

	Test and verification on Python 3.11 and Windows platforms

	Disable universal newlines translation on CSV Storage instances

v0.1.0 (2022-05-16)

	Initial release

 Python Module Index

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tinyflux	

 	
 	
 tinyflux.database	

 	
 	
 tinyflux.index	

 	
 	
 tinyflux.measurement	

 	
 	
 tinyflux.point	

 	
 	
 tinyflux.queries	

 	
 	
 tinyflux.storages	

 	
 	
 tinyflux.utils	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	all() (tinyflux.database.TinyFlux method)

 	(tinyflux.measurement.Measurement method)

 	append() (tinyflux.storages.CSVStorage method)

 	(tinyflux.storages.MemoryStorage method)

 	(tinyflux.storages.Storage method)

 	
 	append_op() (in module tinyflux.database)

B

 	
 	BaseQuery (class in tinyflux.queries)

 	
 	build() (tinyflux.index.Index method)

C

 	
 	can_append (tinyflux.storages.CSVStorage property)

 	(tinyflux.storages.Storage property)

 	can_read (tinyflux.storages.CSVStorage property)

 	(tinyflux.storages.Storage property)

 	can_write (tinyflux.storages.CSVStorage property)

 	(tinyflux.storages.Storage property)

 	clear() (tinyflux.utils.FrozenDict method)

 	close() (tinyflux.database.TinyFlux method)

 	(tinyflux.storages.CSVStorage method)

 	(tinyflux.storages.Storage method)

 	
 	CompoundQuery (class in tinyflux.queries)

 	contains() (tinyflux.database.TinyFlux method)

 	(tinyflux.measurement.Measurement method)

 	count() (tinyflux.database.TinyFlux method)

 	(tinyflux.measurement.Measurement method)

 	create_file() (in module tinyflux.storages)

 	CSVStorage (class in tinyflux.storages)

D

 	
 	default_measurement_name (tinyflux.database.TinyFlux attribute)

 	(tinyflux.point.Point attribute)

 	
 	default_storage_class (tinyflux.database.TinyFlux attribute)

 	drop_measurement() (tinyflux.database.TinyFlux method)

E

 	
 	empty (tinyflux.index.Index property)

 	
 	exists() (tinyflux.queries.FieldQuery method)

 	(tinyflux.queries.TagQuery method)

F

 	
 	FieldQuery (class in tinyflux.queries)

 	fields (tinyflux.point.Point property)

 	find_eq() (in module tinyflux.utils)

 	find_ge() (in module tinyflux.utils)

 	
 	find_gt() (in module tinyflux.utils)

 	find_le() (in module tinyflux.utils)

 	find_lt() (in module tinyflux.utils)

 	freeze() (in module tinyflux.utils)

 	FrozenDict (class in tinyflux.utils)

G

 	
 	get() (tinyflux.database.TinyFlux method)

 	(tinyflux.measurement.Measurement method)

 	get_field_keys() (tinyflux.database.TinyFlux method)

 	(tinyflux.index.Index method)

 	(tinyflux.measurement.Measurement method)

 	get_field_values() (tinyflux.database.TinyFlux method)

 	(tinyflux.index.Index method)

 	(tinyflux.measurement.Measurement method)

 	get_measurements() (tinyflux.database.TinyFlux method)

 	(tinyflux.index.Index method)

 	
 	get_tag_keys() (tinyflux.database.TinyFlux method)

 	(tinyflux.index.Index method)

 	(tinyflux.measurement.Measurement method)

 	get_tag_values() (tinyflux.database.TinyFlux method)

 	(tinyflux.index.Index method)

 	(tinyflux.measurement.Measurement method)

 	get_timestamps() (tinyflux.database.TinyFlux method)

 	(tinyflux.index.Index method)

 	(tinyflux.measurement.Measurement method)

I

 	
 	Index (class in tinyflux.index)

 	index (tinyflux.database.TinyFlux property)

 	(tinyflux.measurement.Measurement property)

 	IndexResult (class in tinyflux.index)

 	insert() (tinyflux.database.TinyFlux method)

 	(tinyflux.index.Index method)

 	(tinyflux.measurement.Measurement method)

 	
 	insert_multiple() (tinyflux.database.TinyFlux method)

 	(tinyflux.measurement.Measurement method)

 	invalidate() (tinyflux.index.Index method)

 	is_hashable() (tinyflux.queries.BaseQuery method)

 	(tinyflux.queries.CompoundQuery method)

 	(tinyflux.queries.SimpleQuery method)

 	items (tinyflux.index.IndexResult property)

L

 	
 	lateset_time (tinyflux.index.Index property)

M

 	
 	map() (tinyflux.queries.BaseQuery method)

 	matches() (tinyflux.queries.BaseQuery method)

 	(tinyflux.queries.FieldQuery method)

 	(tinyflux.queries.TimeQuery method)

 	Measurement (class in tinyflux.measurement)

 	measurement (tinyflux.point.Point property)

 	measurement() (tinyflux.database.TinyFlux method)

 	MeasurementQuery (class in tinyflux.queries)

 	
 	MemoryStorage (class in tinyflux.storages)

 	
 module

 	tinyflux.database

 	tinyflux.index

 	tinyflux.measurement

 	tinyflux.point

 	tinyflux.queries

 	tinyflux.storages

 	tinyflux.utils

N

 	
 	name (tinyflux.measurement.Measurement property)

 	
 	noop() (tinyflux.queries.BaseQuery method)

P

 	
 	Point (class in tinyflux.point)

 	point_attr (tinyflux.queries.SimpleQuery property)

 	
 	pop() (tinyflux.utils.FrozenDict method)

 	popitem() (tinyflux.utils.FrozenDict method)

R

 	
 	read() (tinyflux.storages.CSVStorage method)

 	(tinyflux.storages.MemoryStorage method)

 	(tinyflux.storages.Storage method)

 	read_op() (in module tinyflux.database)

 	reindex() (tinyflux.database.TinyFlux method)

 	remove() (tinyflux.database.Tin